A comparison of the changes in the non-neuronal cell populations of the superior cervical ganglia following decentralization and axotomy.
نویسندگان
چکیده
Transecting the axons of neurons in the adult superior cervical ganglion (SCG; axotomy) results in the survival of most postganglionic neurons, the influx of circulating monocytes, proliferation of satellite cells, and changes in neuronal gene expression. In contrast, transecting the afferent input to the SCG (decentralization) results in nerve terminal degeneration and elicits a different pattern of gene expression. We examined the effects of decentralization on macrophages in the SCG and compared the results to those previously obtained after axotomy. Monoclonal antibodies were used to identify infiltrating (ED1+) and resident (ED2+) macrophages, as well as macrophages expressing MHC class II molecules (OX6+). Normal ganglia contained ED2+ cells and OX6+ cells, but few infiltrating macrophages. After decentralization, the number of infiltrating ED1+ cells increased in the SCG to a density about twofold greater than that previously seen after axotomy. Both the densities of ED2+ and OX6+ cells were essentially unchanged after decentralization, though a large increase in OX6+ cells occurred after axotomy. Proliferation among the ganglion's total non-neuronal cell population was examined and found to increase about twofold after decentralization and about fourfold after axotomy. Double-labeling experiments indicated that some of these proliferating cells were macrophages. After both surgical procedures, the percentage of proliferating ED2+ macrophages increased, while neither procedure altered the proliferation of ED1+ macrophages. Axotomy, though not decentralization, increased the proliferation of OX6+ cells. Future studies must address what role(s) infiltrating and/or resident macrophages play in regions of decentralized and axotomized neurons and, if both are involved, whether they play distinct roles.
منابع مشابه
Temporal Correlation Of Bax Expression And Axotomy-Induced Motoneuronal Apoptosis In Adult Rats: A Morphometric, Ultrastructural And Immunohistochemical Study
Background and Objective: As apoptotic cell death is extremely involved in physiological development and many pathological situations such as cancer and neurodegenerative diseases, the understanding of its molecular machinery can be useful in designing new therapeutic strategies. The present study investigated the temporal expression of the proapoptotic protein Bax in adult spinal motoneuron...
متن کاملStereological Study on the Neurons of Superior Cervical Sympathetic Ganglion in Diabetic Rats
Background: Most research on autonomic dysfunction of diabetes mellitus is conducted on ganglions innervating gastrointestinal (GI) tract and there are limited works focusing on cervical sympathetic ganglia. The effects of diabetes mellitus (DM) on the neurons of superior cervical sympathetic ganglion (SCSG) are investigated by stereological methods. Material and Methods: Female rats (n=72) ran...
متن کاملMorphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملChanges in the dendritic geometry of mouse superior cervical ganglion cells following postganglionic axotomy.
The dendritic geometry of mouse superior cervical ganglion cells was studied over periods of up to 3 months after postganglionic axotomy. Intracellular injection of HRP showed that total dendritic length and complexity were reduced by 60-70%, on average, among cells whose postganglionic axons had been crushed 2 weeks before. Both parameters gradually recovered in parallel with ganglion cell rei...
متن کاملMorphological changes of lumbar spinal neurons after sciatic nerve transection in neonate rats
Axotomy of the sciatic nerve have been documented to cause neuronal loss, especially in newborn rats. Few works have focused on time course of neuronal loss and the type of cell death, which occurs after axotomy. Forty rat pups were anesthetized by hypothermia and the right sciatic nerve transected at five days of their age and the left side was used as control. The operated animals were sacrif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurobiology
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2002